指数分布的期望和方差怎么求?

2024-05-19 00:16

1. 指数分布的期望和方差怎么求?

如下:
指数分布的参数为λ,则指数分布的期望为1/λ;方差为(1/λ)^2。
E(X)==∫x*f(x)dx==∫λx*e^(-λx)dx=-(xe^(-λx)+1/λ*e^(-λx))|(正无穷到0)=1/λ。
E(X^2)==∫x^2*f(x)dx=∫x^2*λ*e^(λx)dx=-(2/λ^2*e^(-λx)+2x*e^(-λx)+λx^2*e^(-λx))|(正无穷到0)=2/λ^2。
DX=E(X^2)-(EX)^2=2/λ^2-(1/λ)^2=1/λ^2。



在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。
指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。
指数函数的一个重要特征是无记忆性(Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。

指数分布的期望和方差怎么求?

2. 指数分布的期望和方差

指数分布的期望:E(X)=1/λ
指数分布的方差:D(X)=Var(X)=1/λ²
指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。

扩展资料:
指数分布应用广泛,在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。但是,由于指数分布具有缺乏“记忆”的特性。
因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同。
参考资料来源:
百度百科-指数分布

3. 指数分布的期望、方差是多少?

指数分布的期望:E(X)=1/λ。
指数分布的方差:D(X)=Var(X)=1/λ²。
指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。

六个常见分布的期望和方差:
1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。
2、二项分布,期望是np,方差是npq。
3、泊松分布,期望是p,方差是p。
4、指数分布,期望是1/p,方差是1/(p的平方)。
5、正态分布,期望是u,方差是&的平方。
6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。

指数分布的期望、方差是多少?

4. 指数分布的期望和方差有什么关系呢?

指数分布的期望:E(X)=1/λ。
指数分布的方差:D(X)=Var(X)=1/λ²。
指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。

六个常见分布的期望和方差:
1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。
2、二项分布,期望是np,方差是npq。
3、泊松分布,期望是p,方差是p。
4、指数分布,期望是1/p,方差是1/(p的平方)。
5、正态分布,期望是u,方差是&的平方。
6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。

5. 指数分布期望和方差如何求解?

指数分布的方差和期望具体区分如下:
1、指数分布的期望:E(X)=1/λ。
2、指数分布的方差:D(X)=Var(X)=1/λ²。
指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。

常见分布的期望和方差:
1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。
2、二项分布,期望是np,方差是npq。
3、泊松分布,期望是p,方差是p。
4、指数分布,期望是1/p,方差是1/(p的平方)。
5、正态分布,期望是u,方差是&的平方。
6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。

指数分布期望和方差如何求解?

6. 指数分布期望,方差是什么意思?

指数分布,可以用来表示独立随机事件发生的时间间隔。
指数分布的参数为λ,则指数分布的期望为1/λ,方差为(1/λ)的平方。
Y~E(入)
f(y)=入e^(-入y)
期望值1/入,方差1/入²
或
Y~E(a)
f(y)=e^(-y/a)/a
只不过期望值是a,方差a²
扩展资料:
设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概型。若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。
参考资料来源:百度百科-概率

7. 指数分布 期望 方差是怎么证明的

首先知道EX=1/a   DX=1/a^2
指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数。
                      f(x)=0,其他
     有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)
                   则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.
            EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a
 而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,
        DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2
            即证!!
     主要是求积分的问题,证明只要按照连续型随机变量的期望与方差的求法公式就行啦!

指数分布 期望 方差是怎么证明的

8. 指数分布期望、方差如何计算?

指数分布的期望:E(X)=1/λ。
指数分布的方差:D(X)=Var(X)=1/λ²。
指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。

六个常见分布的期望和方差:
1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。
2、二项分布,期望是np,方差是npq。
3、泊松分布,期望是p,方差是p。
4、指数分布,期望是1/p,方差是1/(p的平方)。
5、正态分布,期望是u,方差是&的平方。
6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。